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FOREWORD

This report is a preprint of a paper with the same title which 1is

scheduled to appear in the January 1983 issue of the IEEE Tramsactions

on Information Theory (vol. IT-29).




I.  INTRODUCTION

Let XysXgreee be observations of independent and identically distributed

(i.i.d.) random variables xl 1Xyse++ « Consider testingan hypothesis H,, under which

O’
Xi has a probability density function f(x-Go), against a shifted alternative ?

ul; that is, consider the hypothesis pair

H.: X, ~ £(x-8), 93 =3,
versus 0" "1 0 1)

Hl: X1~ f(x9), 8 = 61 >90.

The Neyman-Pearson fixed sample size (FSS) test for (1) is obtained by

taking M samples and testing [1]

M 27=H1
Tz ) ,
=] <-r=¢}l0 ;

whére z, is the observed realization of the random variable Zi=zn (£ (xi-el)/f(xi-eo)) s
and the sample size M and the threshold r are pre-chosen so that the test has

error probabilities P(choosing Hll Ho true) and P(choosing Hol Hl true) of o and

1-B, respectively. (Since we are mainly interested in asymptotic properties here,
randomization of the test is not included in (2).) Alternate- [

ly, Wald's [2] sequential probability ratio test (SPRT) is obtained by

testing, at the n-th sample,

Za=H1
n 3)
T z sb=Ho ‘

€ (b,a) = take another sample, |

where the boundaries a and b are chosen so that the error probabilities

n

are o and 1-p. The sample size N = min{n: ¢ Zi q (b,a)} is now a random
i=1

variable , and the average sample number (ASN) (i.e., the expected value of N)




depends on the actual distribution of X,, i.e., on the actual value of 9.

It is well-known that the SPRT (3) has the smallest ASN under Ho and

H, among all tests with error probabilities no larger than o and 1-B.

However, because the test is not truncated an occasional long test can

result, which is undesirable. Moreover, if the parameter © is not the

assumed value 90 or 61, the ASN of the SPRT can be very large. In parti-
cular, if the density f£(x) is symmetric and if o = 1-8, then max E(N|6)
occurs when 6 = (B0 + GIYZ. where E(N|9) denotes the expected 3a1ue of N
given that each X:L has the density function £(x-€). This maximum value
becomes worse when o and 1-f are smaller [3]. For example, if o = 1-f <

0.008, which is the case in many signal detection problems, then mgx E(N'S)

is larger than the sample size M of an FSS test with the same o and 1-B.

Truncation of the SPRT can be used to prevent this problem; however, one or !
both of the error probabilities will be made larger as a result of such
truncation. Quantitative analysis is needed to study the effect of trunca-

tion on the error probabilities and to find a simple design scheme for a

truncated SPRT which gives error probabilities as required. A preliminary study

of such effects is given in [4] where a bound for the probability of terminat- é
ing before the truncation point and a bound for the resulting ASN have been ob- E
tained. Also, Anderson [5] has studied a truncated test with two converging boun- i

daries so that the maximum ASN is reduced. However, the converging boundaries
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are difficult to design and must be chosen from the results of simulation.
Read [6]) has studied a related test in which a fixed number of samples is
taken first, and then, after this fixed aumber, one additional sample is

taken at a time and the test statistic is tested sequentially with two
constant boundaries. It is shown in [6] that the maximum (over 66[90,91])

ASN is reduced by this technique. However, such a scheme still has occasional
undesirably large sample sizes since the test is not truncated. In [7], the
idea of converging boundaries has been applied to the test of [6]; namely, the
test has two converging boundaries from the start up to a fixed number and
then the boundaries become comstant after this fixed number. Similar reduc-~
tion in maximum ASN as in {6] is observed in {7], but the test still retains
the disadvantage of occasional long sample sizes.

In this paper, we study further the truncated SPRT by extending the
analysis given in (4]. It is observed here that the truncated test can be
viewed as a mixture of an SPRT and an FSS test. Depending on the chosen
degree of mixture, the truncation point and the constant boundaries can be
easily designed such that the resulting test has approximate error proba-
bilities no larger than given nominal values , and 1-g. In Section II
we describe the procedure for choosing the boundaries and the truncation
point when the required error probabilities are @ and 1-g§ and when Gaussian
statistics are assumed. Approximate expressions (which are asymptotically

correct as °1 approaches 90) for the ASN and operating characteristic (0OC)

™




functions and for the sample-size variance of the truncated test are
glven in the same section. These expressions are evaluated in Sec-

tion III, and the advantages of the truncated sequential test become
obvious. Regularity conditions under which the results of Sections II
and III hold for non-Gaussian data are given in Section IV. These
regularity conditions are fairly mild and are satisfied by a large class
of commonly used densities. In Section V, truncated sequential testing
with quantized data 1s considered, and similar results are found to hold
in this case as well. Further, exact results are computed for the
particular case of two-level quantization, and these are seen to agree

closely with results computed using the approximations of Section II.

Notation:

At this point, we define the following notation which will be used

throughout the paper:

A
g = E@2,|8) = [in[f(x-6 )7 £(x=0 )) 1 £ (x-8)dx, (4a)
a2 2
m 2 E(z|8) = J‘un[f(x-el)/f(x-eo)]} £ (x-8 )dx, (4b)
24 2
Tg = Ty = Mg, (4e)
and
A A 24 2 28 2
Mg My s By Ty 5, 0p =20y , 07 ® Oy . (4d)
0 "8" "1 T8y % "%y 17 %,
Thus, kg and c: are the mean and variance of the random variable Zi

from (2) and (3) whien the ¥2ndem variables xi have density function £(x-6).




II. TRUNCATED SEQUENTIAL TESTING FOR THE GAUSSIAN CASE

In this section we assume that the density of the data is Gaussian,
namely f£(x)=(1/ (211)%1() exp(-x2/2K2) where K is known, and we will describe
how to choose the boundaries and the truncation point of a truncated se-
quential test correspondingly. Then expressions for the resulting ASN
and OC functions and for the sample-size variance will be gilven.

For the Gaussian case, the log-likelihood ratio, its mean, second moment,

and variance as defined in (4) are given by

2, = @,-8,) &, - €,+8)/2)/¢, (sa)

by = ©,-0)0 ~ @, +8)/2)/K=6 -8 ) - 1}/¢, (5b)

U'o = '(Bl-eo)zlzxza '“'1 ’ (5¢)

g = @,-8) /K + @, -0 - DK, (54)
and

o = @ -8 ¢ &7, (5e)

where r = @ -80)/(91 -»90) is the ratio of the difference between the actual
parameter € and 60 and the difference between 61 and 60. In subsequent
analysis, we will often use this parameter r instead of 8 so that, when we
consider limitsas 61 approaches @, we allow 9 to approach eo in a way such
that r is constant,

The FSS test (2) with error probabilities o and 1-8 has a sample size

M and threshold ¢+ given by

Mx 0 @ + a1 P ey “ug?) (6a)
and

T - b?[ulfl(a) g l(l-ld)l(a/(uo-ul)) , (6b)




where @(.) is the standard normal distribution function and <b'1\-) is its
inverse. The ASN function and the operating characteristic (OC) function,

L@) 4 P (choosing HOIS), of the SPRT (3) are given by [2]

(1-L®))a + LE)b

s + o0(1), kg #0
E(N[6) = ¢))
-al::/oe2 + o(1) ) Wy = 0
and
( eah(B) -1 ( .
+ 0(1), h@) 0
Lah@)_bh@)
L@) = ¢ @)
ﬁ+o(1) , h®) = 0 ,
where 1lim o0{1) = 0, and -h(B) satisfies
8 =0
1°0
! [f(x-Sl)/f(x—eo)]h(e) f(x-0)dx = 1 , %

which gives h(Bo) = 1 and h(Bl) = -1, For the Gaussian case we have h(8) =

1-2¢0 -60)/(31 -90). The o(l) terms in above expressions arise from the

excess over a boundary when the SPRT terminates. That this excess diminishes

as 61"90 follows from [2, Appendices A2 and A3].
We now describe a truncated sequential test with constant boundaries
* *
a* and b and truncation performed at n=M , as follows: At each observa-

*
tion n < M test




-] * =
| a B
n *
r s zi < b = HO (IOa)
i=1
E(b*,a*) = take another sample,
*
and at n=M , test
* *
M 2t = Hl
z z, * (10b)
i=1 <t =H
0
*
where t* is a fixed threshold. Let @ and l-B* be the error probabilities

* *
under Hy and Hl of the test (10). Although & and 1-f can be approximated,

the expressions are complicated as we shall see later in this section.
* Kk _k *
Therefore, designing a , b , M, and t from these expressions is prohibitive.
* *
However, we can turn to simple bounds for ¥ and 1-f and use them for design-

ing the truncated test (10). 1t was shown in [4] that

*
* = dgppr * %pss (11la)
and
1< @ 1
B ( BSPRT) + (1-Brgg)s (11b)
where «o and (1-8 ) are the error probabilities of an SPRT with thres-

SPRT SPRT

holds a* and b", namely

. ~ 1-exp(b’)
SPRT %* %*
exp(a ) -exp( )

{12a)

1-8 ~ egpi-a*)- 1

SPRT ) (12b)

exp (-a*) - exv(-b*)

and where ¢ ) are the error probabilities of an FSS test with

rss 2nd (1-Bggg

* *
gample size M and threshold t , namely

R




/2

apes = 1 - ®(e” - upoeH 2 (13a)

FSS

1-Bgq = & - ulM*)/c(M*)l/z). (13b)

Again, the approximations in (12) arise from neglecting the excess over the
threshold boundary at termination of the test.

The bounds of (l1) can be viewed as mixtures of the error probabilities
of an.SPRT and those ofan FSS test. In order to design a truncated test with

error probabilities less than o and 1-3, we then can set the bounds in (l1l)

to be o and 1-B, namely

QSPRT + QFSS = g (laa)

(1-8 )+ (1-Bpo) = 1-8 (14b)

SPRT
Thus, we have freedom to choose the degree of mixture between the SPRT error
probabilities and the FSS error probabilities. The choice of the mixture
will determine the truncation point M*, the threshold t*, and the constant
boundaries a* and b*., It will also reflect whether the performance (ASN and
0C functions) of the resulting test will be closer to that of an SPRT or
closer to that of an FSS test or intermediate to these two, as we shall see later.
Note that the values @ and 1-B are used as nominal values in designing a¥*,
b*, M*, and t* so that g* < o and 1-f% < 1-B. It is very unlikely that either
equality, @* = o or 1-g* = 1-B, will result and no attempt is made in the
design to achieve the equalities. Therefore, as numerical results in Sec-
tion III will indicate, the resulting error probabilities a* and l-B* will
usually be smaller than the nominal values & and 1-8 used in the design.

Now let c. and ¢, be two constants between 0 and 1 that determine the

1 2
mixture implied by (14); 1.e., let

et e i )

o




psg ™ c, and aSPRT = (1 -cl)a , (15a)

(1-Bpgg) = €5 (1-B) and (1-8¢pen) = (1-¢,)(1-B), (15b)

Note that,if c, and c, are both zero, then the resulting test (10) is the

*
SPRT. This is equivalent to saying that the truncation is at M = o, On

the other hand if c1 = c2

* *
or, equivalently, the boundaries a and b are » and -=, respectively. If

= 1, then the test (10) is reduced to the FSS test

<y and ¢, are both 0.5, then the test (10) can be thought of as being half

mixed between an SPRT and an FSS test. Using (12) and (15), we set

« [r-a-epa- . [a-epa
a =4n a -cl)a and b = £n T~ -cl)a s (16)
and using (13) and (15), we set
W= 18 e + &7, (1801 /6D’ (172)
and
L - -
e = I1E 8 e #1860/ g -y (176)

Since o, yo and b are known, once cl and c2 are chosen the test (10) can
* % %*

be determined by calculating a , b, M , and t from (16) and (17). Good

choices for ¢y and c2 will be discussed in Section 1II where numerical

results are presented.

Denote the ASN and OC functions of the truncated test (10) by E(N*le)

and L*(B ), raspectively. It ic then obvious from the design that

- e




10

L6, = 18" < 18, (18a)
%* *
- @y =@ S (18b)
and
Eve) = min{d",EN9)], (19)

~ * *
where E(NIG) is the ASN function of an SPRT with boundaries a and b , and

is given by (7)-(9) with a and b replaced by a* and b*, respectively.

In addition to the upper bounds of (18) and (19), approximate expres-
sions for L*(B) and E(N*le) can also be obtained by
using a Brownian motion approximation to the relevant test statistic.
In particular, the random process By (t) = (Z; + ... + ZIM*t] - ue[M*t])/ce(Mf)I/Z,
0< t < T, converges weakly to a standard Brownian motion
as u* goes to infinity [8, p. 137] for each finite T > 0. (Here, [MF] denotes
the largest integer less than or equal to Mt.) Therefore, for large M*,
approximations using Brownian motion results are justified.

* *
From [9], the distribution of the first passage time T = inf{M t:

cA (M*);“Be (®) + Me]) € (°,a”)} is given by

*
Fy(u) = P(T = ul9)

2
2ogm = qend .

@@*-b™? j=1 <ue> ("e in )
——— +
% a*-b"

-1+

H67 N ggofdmat Hoe jrb* bg\2 /T dm 2 |
ex si -e . sin ) . Lurf e 8
P( og ) n(a*-b*> exp(dg ) s (a*-b* exp 2((ce> 'C*-b*) ) » 0Luxg ],

(0)

¥
i
'
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Using this expression the ASN of the test (10), E(N*|g), can be approxi-

mated by

E(N*‘S) ~ E(T7[9)

*

M * *
= udFy (u) + M (1 - Fg (1))
0

-2 U (rexe 1)) 1)
by Gax-br)® 371
where 9
. v = e? o+ () (222)

ak-b* ax-b¥

i (r-i)b* na (r-é)a* b
Q) = 3(-1)’ je sin(j———)- e Si!‘(j——-— }, (22b)

T 2
LI [¢‘1<c1°1> +¢'1(c2<1-e)>]2 =" () ] . @)

and ra(e-eo)/ (61-90) .

The ASN of (21) can also be evaluated using a result of Anderson's

{5, (5.7)], which yields ¥

ea’e) = 2@ p by 48 (0", -a b0 43 @ +¢ 7 (00
i

[1-G(a b ,rd) - G(-b",-a",k-1)]) @)

2,
where, with d = -(¢-1(c1a) +¢.l (cz(l-B)), p(x) = (1/ (21'!)h )exp(-x2/2) (L.e.,

¢ is the unit normal density), € (.) is defined by
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Zlc T { [®(-cd +.2.1b_‘d@i"'_lﬁ).e"2¢[jb-(j+l)a]
j~0

- @(ca +210=1r)a, ~2e (D) (355 2441)a)

- [¢(~cd+2 (j+1)b;(21+1)_a).e-2c(j+1) (b-a)

- @(ca + HUHDD-RIHDS, -2 Uar (FDPg (j413p- 2541y ) ],

€(a,b,c) = c 40 (2a)

j'z:o{ [ (2 (j+1)b- (2j+1 ya)p&itl )b;1 (2j+l )a,

+ 2 FUHLE=QIrDay 1 (5 (341)b- 25+1)a)

- [(23"'(21“'1)3)4’(25!‘%3*1)3)+dcp(21'b'(§j+l)a)] |

*(2jb-(2j+l)a)} , c =0 , *

\

and G is defined by

G(a,b,c)-@(cd-§)+ T
j-
- (D(Z]b-gij-lp - cd)-e-zcj (b-a)

(o@ULB-QizDa_ 4. o~26 ((3-1)b-1a)
1

} 4,(2]}:-(‘211-123 + cdye-2¢((d-)a-1b) f
i

+ (I,(Z.]P:_%Ji_l_)g + cd)-e-z'ch (8-b)} . (24b)

Expressions (21) and (23) give the same result. However, (23) is preferable

for numerical evaluation since (21) normally converges much more slowly than does ¢23),

Usually, only the first few terms of £(°) and 6(*) are needed for numerical

evaluations.

- e e -, AR S s NP " = S

L e . e
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The second moment of N* can be approximated by calculating

E((T*)ZIS) using (20), and thereby we obtain
2 2
E((N*)7|8) =~ E((T*)"|8)

*
M
-1, o? dFg @) + a0)? (1-F (1))

=411 -3
w2 (w2 I COOOT a-pam) exe (1. @5)

where (. Y, and T| are as defined above. The variance of N* is given by

Var, (%) = EC)7g) - B (|g) (26)
and can be calculated using (21) or (23) and (25).
To find an approximate expression for the OC function L*(g) of the
truncated test, we again use Anderson's result [53, (4.68)] and cbtain
% * %
L (9) ~ B(a sb ,1‘) (27&)

where, with r and d as previously defined and with A = -xd - 0.1(orc1), the

function B(*) 1is given by

Q(A) - {[Q(A.Fm%a.m).ez') (ré) _Q(A+gl.£.1;._al)] .e-zj (b'&)(l"‘b)
j=1
L AL ) pRUE ) 206 G ey am)

B(a,b,r) =

R

— -,
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* * % * d ¥
Under Ho and H1 we have ¢ =~ 1-B(a ,b ,0) and 1-f =~ B(a ,b ,1), respectively.:

| If we consider limiting values of the ASN functions by lettingel approach
Go, the ASN values approach infinity. Howevar, if we consider ((61-90)2/21(2) .

times the ASN (i.e,, u.1~ASN) instead, we find that limiting values exist. Therefore,

we will subsequently evaluate and compare the limits of ((91-90)2/21(2) times the

ASN or sample size. With Bor Bp» and cg given by (5¢) and (5e), we have,

. from (6a),
lim o \2v /0wl o Lracl -1 2 (28)
8,~9, [(9;-95) M/2K"] = 3[® "(@) + @ "(18)]".

From (7) and (8), with h@) = 1-2(@ -30)/(91-90) = 1-2r, it follows

that, for the SPRT,

1 ea(1-21:) -1 ik
2r-1 a(l-2r) b(l-2r)|’ =

1im[962 l6/22 e -e

8,7 (3-8) EWN]8)/2K7] = (29)

a+ (b-a)

-ab/2 ,r=3%

*
Since approximation by Brownian motion is asymptotically correct as M
approaches infinity (which is the case when 61 approaches Go),we can argue -

that (21) and (23) lead to

i e b s K i, s




lim -2 >

- 2 * 2 = -——TT———- '2 1_ =
SN [(3,-8p) EN 18)/2k"] (a*-b*)z jEI LEICTEND [l-exp (-N(1))] (308)

or

- 2 %
lm (3-8 EW |8)/2k%] = e(a*,b",x-k) + E(-b",-a",3-1)
®1%%

+ 3107 (e, 00407 ((1-8)e,) 12 (1 - 6" e )

-G(-b",-a",3-1)] (30b)

where r = @ -eo)/(el -60) as previously defined, and £(+) and G(-) are

given by (23) and (24). Similarly, from (25)we can write the asymptotic

second moment of N* as

- 2 - - -] -
Lm { @0 B (006K’ = 2w £ AN -G lexp (1G)).
8,8, (@ -b )* j=1

(31)

The power functlon of the FSS test (2) is given by
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1 -1 -1 2
r-(x-5) [P " (@)+d ~(1-8)]
BFSS(r) = 1-¢ -1 -1 » (32)
-[® @)+ "(1-8)]

where + = % [Oﬁ-lou))z - GD-I(I-B))Z],which is obtained from (6b). The

SPRT has a limiting power function

1 b (1-2r)
- #
ca(l-2r) _ b(l-2r) ' " T E
lim B (r) = lim ([1-L@)] = 33
2,8, SPRT 2,3,
| &/ (a-b) yT=% .

We can also obtain a limiting power function for the truncated sequential

test as
* % *
linm B.(r) = lim [1-1°@)] =1 - B@ b1 (34)
°1~% 917 9%

where B(+) is given by (27b).
In the next section we will evaluate numerically the expressions given
by (28) through (34) in order to compare the three tests, the FSS, the SPRT,

and the truncated sequential test.

4
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III. NUMERICAL RESULTS

In this section we evaluate the performance of the truncated test in order
to compare it with the SPRT and the FSS test. We wish to compare average sample
sizes when each test is designed to have given o and 1-8. As noted in the pre-
vious section, the ASN is a function of 91-60 and it goes to infinity as

61 approaches SO. In order to avoid the parameter (91-60), we defined

r = (8 -80)/(61-30) and obtained asymptotic expressions for (8 -90)2/21(2

1
times the ASN (i.e., ul'ASN), namely expressions (28), (29) and (30). Since

each ASN is multiplied by the same factor,(ell-eo)Z/ZKZ, ratios of two quantities
among (28), (29), and (30) are the limiting ratios of ASN functions as

61-60. For example, the quantity

lim = lim

2 2

2 2
(@) -8 B 18)/2K"] o)
M

is a measure of the asymptotic efficiency of the FSS test relative to the
truncated sequential test.

*
Instead of plotting asymptotic relative efficiencies 1lim [E(N |8)/M]

61~60

and 1lim [E(N*‘e)/E(N\G)], we will plot expressions (28), (29), and (30) on

1%

the same graph. 1In Fig. 1, (28), (29) and (30) are plotted for o = 1§ =

0.01 with the mixture constants c, and c, for the truncated sequential test

1 2

both equal to 0.9. It can be seen that the SPRT has uniformly smaller ASN

than the FSS test and that the truncated test has larger ASN than the SPRT ex-
cept when r is near 0.5. As one would expect, the truncated test has performance
between that of the SPRT and the FSS test. Under HO where r = 0 and Hy where

r = 1, the truncated test exhibits significant savings over the FSS test

(about 40%). The upper bound for the truncated test given by (19) 1is also

plotted in Fig. 1. 1t should be noted that the absolute maximum sample size for
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the truncated test is only about 3% more than the sample size of the FSS test,
while the average sample size is uniformly smaller than the sample size of the
FSS test. Figure 2 shows the same quantities for the alternate case

a = 1-8 = 0,00l. For these smaller values of error probabilities, the nice
features of the truncated test become more apparent. Now a disadvantage of the
SPRT shows, namely the ASN becomes larger than the FSS sample size for r

between 0.4 and 0.6. However, the truncated test retains uniformly smaller

ASN than the FSS test while significant savings (close to that of the SPRT) near
r=0 and r = 1l are still observed and while the truncation point can be kept at

a sample size only a few percent larger than the FSS sample size. Two trun-
cated sequential tests' results are shown in Fig. 2, namely tests with ¢ =

c, = 0.5 and ¢, =6

than that for ¢ = ¢

there is a trade-off between the truancation point and the ASN. Choices of

= 0,9. Note that the ASN for ¢y =¢, = 0.5 is smaller

= 0.9 but the truncation point is larger. Therefore,

, and c, which result in larger truncation points seem to result in (not

necessarily uniformly over 8) smaller ASN'S. Figure 3 shows similar behavior

[

for the case o = 0.0001 and 1-B = 0.0005. 1In this case, we note that
max E(N|6) of the SPRT becomes worse. Further, two truncated tests, with

¢, = 0.83, ¢, = 0.1 and ¢, = = 0.9, still show ASN's uniformly smaller

2 1”2
than the FSS sample size. However, more savings in ASN than in previous cases

are observed under H, and H,. Note that the graphs are skewed in this case

0 1
because o # 1-B. Note also that the truncated test with ¢, = 0.83 and
cy = 0.1 has a larger truncation point than the truncated test with ¢ =

c2 = 0,9, However, its ASN is not uniformly smaller than that of the other

case. From these numerical results, we conclude that a truncated test can
be designed (with error probabilities less than o and 1-f) by suitable

choices of 1 and c, so that it retains the advantage of savings in sample

2

4
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sizes near r=0 and r =1 while the ASN is uniformly smaller than the sample
size of a corresponding FSS test and while the truncation point is only
slightly larger than the sample size of the FSS test. |
In order to see how the choices of < and <, affect the truncation point |
and the ASN function, we now evaluate ul-ASN under HO’ u-l-ASN under Hl’ .
mgx[p.lE (N*IS)], and the truncation point of a truncated test, and plot their
values versus c, = c,. The values i M of the FSS test and h,E (Nleo) and
plE(Nlel) of the SPRT are also plotted in Fig. 4(b) for = 0.05, 1-B = 0.01,

in Fig. 5() for a = 1-B = 0.001l, and in Fig. 6 (b) for o =1-f =0.0001. Ratios
of (average) sample sizes are plotted in Figs. 4(a), 5(a) and 6(a). These re-
sults indicate that as N and <, approach zero, E(N*IBO) and E(N*Iel) approach
E(NISO) and E(Nlel) of the SPRT, respectively, as expected. On the other hand,
as c, and c, approach unity, E(N*|9) approaches M of the FSS test for each value

2

of 6, From these graphs, we can choose ¢y =¢, between Q and 1 so that H*/M is

not too large, {ménx E(N*le)}/M i3 near its minimum value, and E(N*| 60) and E(N*Iel)
are as close to E(Nleo) and E(NIGI) as needed. Of course, the actual choices of
<, and <, depend on the designer's judgment as to what is more important to
minimize, M'/M, {mgx E(N'|€)}/m, or E(I0)/EN€)) and EN0)/EQN]0)).

Since meax E(N*IG) seems to be less sensitive to €1 and <, for ¢ and <, between ‘
0.3 and 0.7, the primary tradeoff is between M* and E(N*ISO) or E(N*|91). h
Figures 5 and 6 indicate that good ¢y and <, choices seem to be between 0.3 and

0.6 for these two cases. |

Further numerical investigation shows that the boundary a* is more sensi-

tive than the boundary b* to changes in e A result is that changing 2 will
cause more change in E(N*le) for 6 near 91 than change in E(N*Ie) for

6 near 90. with <, fixed, increasing €1 will also increase E(N*|91). On

the other hand, b* is more sensitive to change in cz, and increasing c¢

2
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*
with ¢, fixed results in an increase in E(N |eo). Both ) and ¢, have
%*
the same effect on max E(N IS). Of course, ¢y and <, can be chosen to have
6
different values. Optimum choices of €1 and <, depend on a given criterion.
For example, M* can be set to a maximum allowable value and then c1 and <,
* *
can be chosen to minimize E(N ‘60), E(N |9), or a weighted average of these

three. Since there are many possible criteria, we will not pursue the

search for optimum choices of <1 and c2 here.

The behavior of the variance of N* is also informative.Tius, we now compare
lim (ui vare(N*)) of the truncated test with lim 04% Vare(N)) of the SPRT, where
the limits are taken as el approaches eo. The first limit can be calculated
from (30) and (31) since Vare(N*) = E((N*)z,g) -EZ(N*Ie). The second limit,
that for the SPRT, can be evaluated using Wald's results [2, Appendix 4.5]
which glve approximate formulas for moments of N (the sample size). As with
the approximate formulas in Section II, these values are asymptotically
correct as 61-90. with these formulas, we obtain Table I, correspond-
ing to those cases of Figures 1, 2, and 3, namely @ = 1-8 = 0.1, ¢ = 1-8 =
0.001, and @ = 0.0001 and 1-g = 0.0005, respectively. Results show that
the untruncated SPRT has large sample size variance when r = (9-90)/(91-60)
is near 0.5. This is due to the fact that the test terminates with very
large sample size most of the time under this condition. In contrast, the
truncated test has very small sample size variance when r is near 0.5.
This is so because the truncated test terminates most of the time near or

at the truncation point M* for r near 0.5. Note further that, under H, and

0
Hl’ ui Vhre(N*) of the truncated test and “i Vhre(N) of the SPRT are only
slightly different from one another. These phenomena indicate an additional

favorable property of the truncated tast as compared to the SPRT.
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It is also of interest to investigate numerical results for the power

functions of (32)-(34)A typical comparison is shown in Fig. 7, where

@ = 1-3 = 0.1. The SPRT and FSS power functions coincide at r = 0, 0.5,
and 1.0. Between r = 0 and 0.5, the power function of the SPRT is smaller
than that of the FSS while it is larger between r = 0.5 and 1.0. How-
ever, the difference between these two power functions is not significant.
The power function for a truncated sequential test with ¢, = 0.4 and

1

¢, = 0.6 (from (34)) is plotted in the same figure. We see that this

function is smaller than the other two for r < 0.5 and larger for r > 0.5.
*

At r = O we have @ = 1-p" ~ 0.067, which is smaller than 0.1; this is due

to the fact that ¢ = 1-3 = 0.1 are nominal values used for the design and

they serve only as upper bounds for the actual error probabilities «*and 18", ,
To see how close a* and 1-8*% are to o and (1-3), we evaluate these using

(27) for various values of &, 1-B, ¢, and c,. These values are

tabulated in Table II, from which it can be seen that o and 1-5* are

between 887 to 967 of @ and 1-3 for the cases considered.
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IV. THE CASE OF NON-GAUSSIAN DATA

Although we have concentrated thus far on the case where f£(x) 1s a
Caussian density, the asymptotic results of Sections II and III hold for
non-Gaussian densities as well. In this section, we define a class of
non-Gaussian density functions and show that the previous results apply
when the observation statistics are described by a member of this class.

We use the same notation as in Section II.

Assume the following conditions on £(x):

Al: f£(x) is continuous with finite Fisher's information number I(f) =
f(f'/f)zf » and f'(x) exists and is continuous with a possible
exception at x = 0, where f'(x) denotes the derivative of £(x).

A2: The mean and second moment of the log-likelihood ratio, kg and o,
exist.

A3: There exists a A > 0 such that, for t € [-A,A],

! t ] 2 ' 2
ff(Ll}:‘) f(x+t),f?(%)-f'(x+t), —EH(;:-Q f(x+t), and if_(%l £' (x+t)

are uniformly integrable. (A function f(x,t) is uniformly integrable
for t € [-A,A] if there exists an integrable function g(x) such that
| £(x,t)] = g(x) for all t € [-A,A].)

Within these assumptions, it can be shown that

2
)

sg = @132 (@-0.5)1(E) + 0(6, ~8)%) (35)

and

o5 = @971 + o(®; -8 )%, (36)

vhere lim "(@1'90)2)/@1‘90)2 =0as6,~8,. . prove (35) and (36),

o.
arguments ~arallel to those of the Appendix in [3) can be used. From

(35) and (36), it follows that

. VORI




lim (“'e/"e) =r-% (37a)

8 -'60
lim (o' /(p. )) = lim (o /(p “Ha)) = 1. (37b)
0 10
To maintain constant error probabilities under Hy and H, as 61-'60, the sample

%
size M and the truncation point M must approach infinity. Since kg and
caz are fmlte by Assumpt:.on A2, we have, by the Central Limit Theorem [10],
- o M‘
that (]El zy Mua (M ) g and (i}i z, Mp.e)/ 9y converge in distribution

to standard normal random variables as M and M go to infinity. Therefore,

(6) and (17) hold asymptotically; i.e.,

lin (G, ~ug)’/oy) = 1@ @ & a-m)? (382)
9,78
1 70

3 e el -1
Um  (r/M* oy)=-2 [® @ -® (1-B)], (38b)
8,3
1 70
e 0y e)?ed) = 1@ e + 8 e, B0, (8
s -

and ° * & -1 -1
lim (£ 00 Reg)= - F187 (e @) - €7 (e, (18] - (38d)
8 "Bo
")

As in Section II we let BS (t) = ( ): zi'”'e[M t])/ (M )e ce,OS:sT for finite
T > 0. Since kg and aez are finite, the random process Be (t) converges weakly to
a standard Brownian motion. As noted above, the operating characteristic
function and the expected stopping time for this’ random process were found
* 2

in [9]. In particular, with T = inf {M't:( )%gg B, (t) +ue[M t] € (b,a)},

we have

[a(l-L@)) + bLE)]/ug, kg # 0
E(T[0) =

2
'ab/O'a » pe = 0 >
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and the corresponding operating characteristic is

/
e‘Z(&Le /029) - 1
e'z(mg/og) _e‘z(bUe/O’e)
LE) = 40)
a
ab » By =0 .

\

Now with (37), (39), (40) and the fact that Ba (t) converges weakly to a Brownian

motion, we have for the SPRT (3),

L " Bea) e-a(Zr-l) -1 ] ‘3
a+ (b-a T
lim [(91-90)21(f)E(N|e)/z] = {21 .-aQ@r-1) _ _-bQr-1)
9,79, -ab/2 ,r=3 ,
(41) |

which is the same as (29). By similar arguments for the test (10),
*
lim [(91-90)2I(f)E(N [8)/2]  is given by the right-hand side of (30a) or
8,—9
1 70

(30b). We note that I(f) = 1/K2 for the normal density with zero mean and

variance KZ. Similarly, the asymptotic power functions (32)-(34) carry

over to non-Gaussian densities satisfying assumptions Al through A3.
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V. THE EFFECTS OF DATA QUANTIZATION

In this section we will show that the ASN functions of truncated sequential
tests based on k-level quantized data have the same asymptotic behavior as
those just studied provided that the pre-quantized data density f(x) satisfies mild

regularity conditions. Consider a k-level quantizer with finite output levels

21,12,...,£k and with quantization points -= < ) < 8y < e < k-1 < ® as
shown in Fig. 8. For convenience let 8= =% and Sy = ©,and denote i.i.d.
random variables Q(Xl),Q(Xz),... by YI’YZ"" where

Qx) = 4. 1if s, <x<2s,, j=1,2,...,k. (42)

] j-1 j

The probability that Yi

takes the value lj when X, has a density f(x-8) is

Pj@) = P(Y; = £5]8) = F(s;9) - F(s;_18), § = L,2,..0k. (43)
where F(x) is the distribution function corresponding to £(x)
We now consider truncation of a sequential test for (1) based on the
% *
quantized data Yys¥gseee with boundaries a and b and truncation point at

* *
M, namely, for n < M , we test

*
& a =H1
k n N
z mj(n),q, =T y (sb =H (bha)
3= I a1

* %
€M ,a ) = take another sample,

*
and, forn = M , we test
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* *
k M =t = Hl
L m (n)lj =Ty * (44b)
jm 3 i=1 <t =H
k
where mj(n) is the number of yi's taking the value ‘j’ with Z mj(n) = n at
i=1

each stage. To obtain a truncated sequentlial probability ratio test on
Yps¥gaeees we set L, = n(p,@))/p;64)), for 3=1, ..., k.

Define
K k
g = E(¥;]0) = 51 TENO) (45)
and .
k YZ k 2
my = E(Y;|8) = I 4t ne (46)

It is shown in the Appendix that, if £(x) is continuous for all x, then

b = @ -8 (=050 + 0B, -9)%) (472)
and
W= @, -0 200 + 0(@, -9 , @7b)
where
2
@ = § A0 o “8)
& TFG e F Gy 30

We note that e(k) given by (48) is the detection efficacy of a k-level quan-
tizer-detector [1ll] and can be thought of as a discrete equivalent to the

Fischer information number I(f).
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2 *
Once we have established (47), we can argue that lig [(91-90) e(k)E(Nk|6)/2]
e-.
10

*
is given by expression (30a) or (30b), where Nk is the sample size of the
truncated test (44). Thus by this result and that of Section IV, if £

gsatisfies assumptions Al through A3, we have

EQ]2) 1(£)

: . 48)
EQN]9) e (k)

lim
91~60
Therefore the truncated sequential test (44) using quantized data has the
same asymptotic efficiency relative to the truncated sequential test (10)
using unquantized data, as does an FSS test based on the same quantized
data compared to an FSS test based on unquantized data. 1In other words,
the percentage of (asymptotic) savings in sample size of a truncated
sequentlal test over an FSS test with both using quantized data is the same
as the (asymptotic) sa’ing of a truncated sequential test over an FSS test
with both using unquantized data. As in Section IV, the asymptotic power
functions of (32)-(34) als; hold for tests with k-level quantized data
as well. Therefore, the conclusions of Section III carry over for FSS, SPRT,
and truncated sequential tests based on quantized data, as do results in
earlier works which compare quantized FSS tests to unquantized FSS tests
(11].

To assess the accuracy of the approximate expressions for ASN and OC

functions derived in Section 1II, it is interesting to consider the case in

_ _ - . WPRTT - S it ah b o . e ia
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which k = 2 and s, = (e1 + 90)/2. Assuming the density f(x) is symmetric
about x = 0, we then have (fro? (43)) that pl(e) = 1-P2(6) and 92(90) =
1-92(91). For this case, exacé values of E(N*‘e), Vare(N*), and BT(G) can
be computed using results from [12,13]. Table III compares these exact
values with the approximations based on Brownian motion for the case
P,®)) = 0.7 and a" = -b" = 10 4n ((1-P,(9,))/P,(6,)) with truncation
points M* = 25 and M* = 4]1. Note that 9 appears here only through the
value of pz(e). It can be seen from this table that the approximations

are all reasonably gocd in this case, especially that for the ASN.

s, e R it AT AT

o gy
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VI. CONCLUSIONS !
In this paper we have considered truncated sequential location testing é
with constant boundaries and abrupt truncation. Design procedures for the
two constant boundaries, the truncation point, and the threshold have been
given for nominal error probabilities under HO and Hl' These procedures
are based on treating a truncated sequential test as a mixture of a sequen-
tial probability ratio test and a fixed sample size test. Formulae for the
operating-characteristic function and the average-sample-number function of f
the proposed tests have been given; and, although these results hold in an
asymptotic sense, they may be used as approximations for the nonasymptotic

case. An example comparing exact and approximate values was given in Sec-

bS] “X

tion V. In this example the approximations were good; however, the general

o

accuracy of these approximations is a topic for further study. If the test ﬂ
statistic converges rapidly to a Brownian motion, then the approximations

should be good for moderate parameter values. Note for example that, if in

the example of Section V f£(x) is a Gaussian density with variance K?, then

fz(el) = 0.7 corresponds to a signal-to-noise ratio, (91-60)2/K2, of

approximately 1.1, which is moderate.

The numerical results of Section III demonstrate that a properly designed
truncated sequential test can retain the advantage of sample savings of the
SPRT under the hypothesis and the alternative while it eliminates the dis-
advantages of the SPRT of possible large sample size when the true location
parameter is different from those assumed for the hypothesis and the alterna-
tive, For given error probabilities, the truncated sequential test has a
uniformly smaller ASN function than a corresponding FSS test while the ASN's

under Ho and H, are close to those optimum values of the SPRT. Therefore,

1
the truncated sequential test should be preferred to the SPRT if long runs
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cannot be tolerated and if parameter mismatching is possible, and it should f
be preferred to the FSS test if the small amount of additional complexity
required for the truncated sequential test can be tolerated.

Before concluding, we remark that performance comparisons between |

SPRT's and FSS tests have been investigated in several studies including

[3) and [14]-[16]. Also, the relative performance of two non-truncated

sequential tests with the same constant boundaries has been investigated
by Lai [17]. It was shown there that the relevant asymptotic relative
efficiency is given by the ratio of the efficacies of the two test statis-
tics, as is the case when comparing two FSS tests [18]. Note that in [17]

the tests under comparison have the same decision boundaries and only the

test statistics are different. However, in our study, we have compared
tests with the same test statistic, namely the probability ratio, but with i
different decision boundaries: an FSS test with a fixed number of samples,
an SPRT with two fixed boundaries, and a truncated sequential test with two
fixed boundaries (different from those of the SPRT) and a truncated sample

size. Asymptotic (in the sense that the alternative approaches the hypo-

thesis) comparison between a truncated sequential test and an FSS test or

an SPRT has not been previously investigated. This work is, therefore, com-
plementary to the previous worKs mentioned above. Finally, we note that Berk
[19] has studied asymptotic efficlencles of sequential tests in a different
sense; in particular, the asymptotics in [19) are as the error probabilities

approach zero.
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APPENDIX: DERIVATION OF EQ. (47)
To show (47a) we write
K k
by = j§1 (Pj@p) + d4)n (1 +8,/p,®p)) (A. 1)

where g5 = (F(s;=8)-F(s;-8)) - (F(s;_ ) -3)-F(s;_,-84)) and

.’zj = (F(sj -G].)-E‘(sj -60))- (r<sj_1-el) -F(sj_l-eo)). We expand

2 2
Zn(1+Aj/pj(30)) = (Aj/pj(Bo)) -O.S(Aj/pj(eo)) + o(Aj), where

2

lim o(Ai)/A = 0 as AJ. = 0. Using this expansion, Wwe can write

3

K kK ALA e o2 ka2 k
k B3 J LN ) 2
wg = T A+ T e § L - % = 7+ T 0@y,

j=1 =1 7370 =1 *jvo j=1 (Pj(eo)) j=1

(A.2)

k k k
Since ¥ p,@,) = T p.®,) =1, we must have £ A, = O, Now, using a Taylor

j=1 vl j=1 7o j=1 .

Series expansion of F(x-el), we have

Aj = F(sj -9,) -F(sj =99 'F(sj-l -8 +F(Sj-1 -89

= F(sj -90) - (91-60)f(sj -9*) -F(sj -Go) -F(sj_1-60)+ (Bl-eo)f(sj_l-e**)+

+ F(sj_l-eo)
* *¥%
= -(61-60)(f(sj-9 )-f(sj_1~8 )) (A, 3)
where 9*, G**E (eo,e 1), and, similarly,
Aje - -(e 'eo)(f(sj -e*) -f(sj"l-a**)) ’ (A- 4)

where 8 ., 8 € (90,6). With these values we have

h—*—.—.—__‘» o imaribiliai m — e o "
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£(s, -8,) - £(s £(s,-6") - £ ™™
S8 e a2 B TOR EGy **))((s 8- £y 0Ty
a, 3)
2 * *k 2
A (f(s, -9 )-f(s -9 ))
T " €10 T e G, y *. ©
P;%0 j 3-1"%
and
AIBAZ. o 3 (£(s,-9,) - £(s,_ 9**))(f(sj—9*)-f(ij_l-e**))z
2
®; @) (F(sj-eo)-F(sj_l-Go))z
= -8 2
0((91 0) ), (A. 7)
where r = (® -90)/(91 -60). In addition, we have o(A?) = o(@l-ao))z;
therefore
k 2
" k (£(s,-8,)-£(s,_;-9,))
lim .__e ._..2 = (r-b) 5 F(SJ_GO)_F(SJ 1-60) (a. 8)
91 60 (61-60) j=1 j o j=1 "0
since £(x) is continuous, and (47a) follows.
For (47b), we write
k. ; (P, @) +0,) [An(l +4,/p (9))]2 (4. 9)
LS RS 3P '
with [4n(l+4,/p, 6 )12 = 4./p. @ N + 0(42), we have
7370 it o h
L ka2 kA6 )
m T _l-_p @ )+ T —J-a—i—+o(Aj). (A.10)
=1 73000 gm0 )
With (A. 6) and (A. 7) for A?/pj(eo) and AjeAgl(pj(Bo))z, (47b) follows.
hm SER ST
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